Kinetics and Mechanism of Axial Ligand Substitution of Alkyl Cobaloximes by Substituted Pyridines in Different Solvents

Basam M. Alzoubi, [a] Mohamed S. A. Hamza, [a,b] Alessandro Felluga, [c] Lucio Randaccio, [c] Giovanni Tauzher, [c] and Rudi van Eldik*[a]

Keywords: Cobaloximes / Solvent effects / trans effect / Ligand-substitution reactions / Nitrogen heterocycles

Ligand-substitution reactions of trans-RCo(Hdmg) $_2$ S (where R = PhCH $_2$ or CF $_3$ CH $_2$, Hdmg = dimethylglyoximate, and S = H $_2$ O or MeOH) were studied for the nucleophiles 4-aminopyridine (4-NH $_2$ Py), pyridine (Py) and 4-cyanopyridine (4-CNPy). From the pressure and temperature dependence of the substitution of methanol by 4-NH $_2$ Py, Py, and 4-CNPy, the activation parameters ΔH^{\neq} , ΔS^{\neq} , and ΔV^{\neq} were estimated for the cases where R = PhCH $_2$ and CF $_3$ CH $_2$. The activa-

tion parameters for the substitution of H_2O by Py and 4-CNPy in the case where $R=CF_3CH_2$ were also found. The kinetic data and activation parameters show that the dissociative character of the reaction decreases on changing the R group from PhCH $_2$ to CF_3CH_2 and the solvent from MeOH to H_2O .

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Introduction

The study of the chemical and physical properties of organocobalt compounds, which serve as models for vitamin B_{12} , is of interest both to inorganic and bioinorganic chemists. Various pseudo-octahedral organometallic complexes of Co^{III} , containing equatorial ligands such as dioximes, $^{[1-9]}$ imino groups/oximes $^{[10]}$ and Schiff bases derived from diamines and salicylaldehyde $^{[11]}$ or acetylacetonate have been proposed as models for the vitamin B_{12} coenzyme. Some of us recently studied the reaction of cyanide with various alkylcobalamins (RCbl, where R = CN, $CNCH_2$, CF_3 , CF_3CH_2 , CF_2H , CH_3 , $BrCH_2$) and found that the nature of the alkyl group has an important influence on the thermodynamic equilibrium constants, and the kinetics and mechanism of the substitution reactions of the axial ligand *trans* to the alkyl group. $^{[13,14]}$

The nature of the axial alkyl group in cobaloximes^[2] and in related [RCo{(DO)(DOH)pn}H₂O]⁺ complexes^[15] has an effect on the substitution of the ligand in the *trans* position. This substitution is very rapid and involves a dissociative activation mode, similar to the substitution of labile

cobalamin complexes. Ligand-substitution reactions of vitamin B₁₂ and its models in general follow a dissociative (I_d or D) type of mechanism.[16-28] In the case of the coenzyme, evidence was initially reported for an associative substitution mode, which was, however, recently reinterpreted and instead assigned to a subsequent Co-C heterolysis reaction.^[29] An interchange mechanism may involve either associative or dissociative activation (Ia or Id mechanism), according to the relative importance of bond making and bond breaking in the transition state. Evidence that usually leads to the assignment of a dissociative mechanism includes the absence of any relationship between the nature of the entering nucleophile and the rate constant, an increase in lability with an increase in the electron donating ability of the alkyl group R in the trans position, and positive values for both ΔV^{\neq} and ΔS^{\neq} .

In general, kinetic studies are performed under pseudo first order conditions using a large excess of ligand over the complex. A linear dependence of the observed pseudo first-order rate constant on the concentration of the entering nucleophile has been observed in almost in all cases, both for aquacobalamin and synthetic models in aqueous solution. The first deviation from linearity was reported for the reaction of [RCo{(DO)(DOH)pn}H₂O]⁺ complexes (R = Me and Et). Curvature in the plot of $k_{\rm obs}$ versus ligand concentration generally characterizes multistep processes, such as a limiting dissociative mechanism (D), which involves a pentacoordinate intermediate, or a mechanism in which intermediate species are formed in a rapid pre-equilibrium which precedes the slow substitution step. In the above-mentioned complexes, linear relationships between

[[]a] Institute for Inorganic Chemistry, University of Erlangen-Nürnberg,

Egerlandstr. 1, 91058 Erlangen, Germany
Department of Chemistry, Faculty of Science, Ain Shams

Cairo, Egypt

[c] Dipartimento di Scienze Chimiche, Università degli Studi di Trieste,

³⁴¹²⁷ Trieste, Italy
Supporting information for this article is available on the WWW under http://www.eurjic.org or from the author.

 $k_{\rm obs}$ and ligand concentration were found for the substitution of water by a number of nucleophiles. However, curvature was observed for L = imidazole, benzylamine, pyridine and 4-methylpyridine. Since the later four ligands all contain aromatic group, it was tentatively suggested that these are involved in forming the intermediate, perhaps through a π - π interaction with the conjugated system of the (DO)(DOH)pn equatorial ligand.

More recently, a non-linear dependence of k_{obs} on the concentration of the entering ligand has been reported for the reaction of aquacobalamin with substituted pyridines.[16] This was first incorrectly interpreted as evidence for the operation of a limiting dissociative mechanism, but later work clearly demonstrated that the observed deviation was due to the rapid formation of adducts involving the nucleophiles and cobalamin, preceding the slow substitution reaction according to a dissociative interchange mechanism.^[17] This finding greatly enhanced our interest in mechanisms associated with the reactions of nucleophiles that contain an aromatic group because of the connection with the biochemistry of vitamin B₁₂. Therefore, in order to obtain a deeper understanding of this phenomenon, we extended the present study to cobaloximes, which are the most widely recognised model systems for the study of vitamin B_{12} . We report kinetic data for ligand-substitution reactions of $RCo(Hdmg)_2S$ with various pyridines, where R =PhCH₂ and CF₃CH₂, $S = H_2O$ and MeOH and L = 4-NH₂Py, Py, and 4-CNPy, in order to study the kinetic trans effect in alkyl cobalt complexes as a function of nucleophile concentration, temperature and pressure.

Results and Discussion

The ligand-substitution reactions of trans-RCo(Hdmg)₂S (where $R = CF_3CH_2$ and PhCH₂) with various nucleophiles L = 4-NH₂Py, Py, and 4-CNPy to form RCo(Hdmg)₂L, according to Equation (1), were studied with MeOH and H₂O as solvents.

$$RCo(Hdmg)_2S + L \rightarrow RCo(Hdmg)_2L + S$$
 (1)

The results fall into two categories: (i) when the incoming ligand is Py or 4-NH₂Py, a non-linear concentration dependence is obtained for both PhCH₂ (S = MeOH) and CF_3CH_2 (S = MeOH or H_2O) derivatives, (ii) when the incoming ligand is 4-CNPy, a linear relationship is observed for both the PhCH₂ (S = MeOH) and CF₃CH₂ (S = MeOH or H₂O) derivatives. The reaction of $(4-10) \times 10^{-4}$ м trans-RCo(Hdmg)₂(H₂O) with an excess of nucleophile (4-NH₂Py and Py) was studied at various temperatures in MeOH and H_2O . The results are shown in Figure 1 (R = CF_3CH_2 , L = 4-NH₂Py in MeOH) and Figure 2 (R = CF_3CH_2 , L = Py in H_2O); see also Figure S1 (R = PhCH₂, L = 4-NH₂Py in MeOH) and Figure S2 (R = CF₃CH₂, L = Py in MeOH) in the Supporting Information (see footnote on the first page of this article). The plots show significant curvature at high nucleophile concentration and negligible intercepts, which can be interpreted (see below) in

© 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

terms of the interchange mechanism presented in Equations (2) and (3). The corresponding rate law is given in Equation (4), where K represents the equilibrium constant for precursor formation, and k the interchange rate constant. In these cases, k and K can be separated kinetically so that their values can be discussed individually.

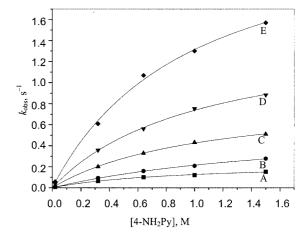


Figure 1. Plots of $k_{\rm obs}$ versus [4-NH₂Py] for the reaction with *trans*-(CF₃CH₂)Co(Hdmg)₂(MeOH) as a function of temperature. Experimental conditions: [Co^{III}] = 1×10^{-3} M and temperature 20.0 (A), 25.0 (B), 30.0 (C), 35.0 (D), and 40.0 °C (E)

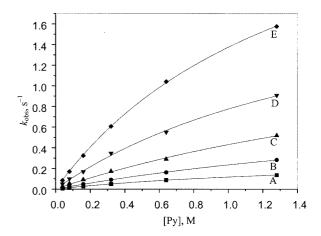


Figure 2. Plots of $k_{\rm obs}$ versus [Py] for the reaction with *trans*-(CF₃CH₂)Co(Hdmg)₂(H₂O) as a function of temperature. Experimental conditions: [Co^{III}] = 1×10^{-3} M, pH = 8.0, I = 0.1 M NaClO₄ and temperature 20.0 (A), 25.0 (B), 30.0 (C), 35.0 (D), and 40.0 °C (E)

$$[RCo(Hdmg)_2S.L] \xrightarrow{k} RCo(Hdmg)_2L + S$$
 (3)

$$k_{\text{obs}} = kK[L]/(1 + K[L]) \tag{4}$$

Figures 3 and S3 (for the latter see the Supporting Information) show plots for $k_{\rm obs}$ versus [L] for the reaction of R = CF₃CH₂ with L = 4-CNPy in MeOH and H₂O, and

R = PhCH₂ with L = Py and 4-CNPy in MeOH, respectively. The linear plots have negligible intercepts, which indicate that the back reactions do not contribute significantly and that no parallel reaction takes place. This behaviour can be expressed by the rate law given in Equation (5), from which it follows that the overall second-order rate constant (k_a) is a composite of k and K, and cannot be separated easily.

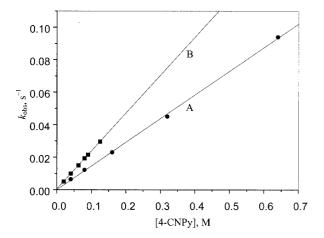


Figure 3. Plots of $k_{\rm obs}$ versus [4-CNPy] for the reaction with trans- $(CF_3CH_2)Co(Hdmg)_2S$ where S = MeOH (A) and H_2O (B) as a function of temperature. Experimental conditions: $[Co^{III}] = 1 \times I$ 10^{-3} M, (pH = 8.0, I = 0.1 M NaClO₄ for S = H₂O) and temperature 25.0 °C

$$k_{\text{obs}} = k_{\text{a}}[L] = kK[L] \tag{5}$$

Tables 1, 2, 3, and 4 summarize the kinetic data obtained at different temperatures and pressures for the series of reactions investigated in this study. Plots of $ln(k_a)$ versus pressure give good linear relationships as shown in Figure 4 for the reactions of trans-(CF₃CH₂)Co(Hdmg)₂(MeOH)

Table 1. Kinetic data for the reaction of trans-RCo(Hdmg)₂(MeOH) with 4-NH₂Py as a function of temperature

R	T, °C	k, s ⁻¹	<i>K</i> , м ^{−1}	<i>kK</i> , м ⁻¹ s ⁻¹
PhCH ₂ [a]	5.0	127 ± 4	0.38 ± 0.02	48 ± 3
-	10.0	187 ± 10	0.47 ± 0.03	88 ± 7
	15.0	228 ± 22	0.62 ± 0.07	141 ± 21
	20.0	458 ± 39	0.52 ± 0.06	238 ± 34
	25.0	1017 ± 135	0.35 ± 0.03	356 ± 56
	ΔH^{\neq} , kJ·mol ⁻¹			67 ± 2
	ΔS^{\neq} , J·mol ⁻¹ K ⁻¹			$+28 \pm 7$
CF ₃ CH ₂ [b	20.0	0.24 ± 0.02	1.13 ± 0.16	0.27 ± 0.04
	25.0	0.61 ± 0.05	0.54 ± 0.07	0.33 ± 0.05
	30.0	0.88 ± 0.03	0.94 ± 0.05	0.83 ± 0.05
	35.0	1.50 ± 0.07	0.96 ± 0.09	1.44 ± 0.15
	40.0	2.60 ± 0.16	1.02 ± 0.12	2.65 ± 0.35
	ΔH^{\neq} , kJ·mol ⁻¹			90 ± 9
	ΔS^{\neq} , J·mol ⁻¹ K ⁻¹			$+49 \pm 29$

[a] $[PhCH_2Co(Hdmg)_2MeOH] = 4 \times 10^{-4} \text{ M}, [4-NH_2Py] =$ 0.01-0.64 M in MeOH. [b] [CF₃CH₂Co(Hdmg)₂MeOH] = 1×10^{-3} M, $[4-NH_2Py] = 0.02-1.5 M in MeOH.$

with 4-NH₂Py, Py and 4-CNPy. Similar plots are presented in Figures S4 and S5 (see the Supporting Information) for the reactions between RCo(Hdmg)₂H₂O and the nucleophiles L = 4-NH₂Py, 4-CNPy, and Py, where R = PhCH₂and S = MeOH, and the nucleophiles L = 4-CNPy and Py, where $R = CF_3CH_2$ and $S = H_2O$, respectively. The activation parameters for the substitution of methanol by 4- NH_2Py , Py, and 4-CNPy in the case where $R = PhCH_2$ were found to be $\Delta H^{\neq} = 67 \pm 2$, 77 \pm 1 and 80 \pm 2 kJ·mol^{-1} , $\Delta S^{\neq} = +28 \pm 7$, $+57 \pm 5$ and $+71 \pm 6 \text{ J·mol}^{-1}$ K^{-1} , and $\Delta V^{\neq} = +9.8 \pm 0.1$, $+10.3 \pm 0.3$ and $+13.0 \pm 0.3$ cm³ mol⁻¹, respectively. The activation parameters in the case where $R = CF_3CH_2$ were found to be $\Delta H^{\neq} = 90 \pm 9$, 91 \pm 5 and 89 \pm 3 kJ·mol⁻¹, $\Delta S^{\neq} = +49 \pm 29$, $+42 \pm 17$ and $+36 \pm 8 \text{ J} \cdot \text{mol}^{-1} \text{ K}^{-1}$, and $\Delta V^{\neq} = +7.5 \pm 0.3$, $+8.6 \pm$ $0.1 \text{ and } +9.4 \pm 0.1 \text{ cm}^3 \text{ mol}^{-1}$, respectively. The activation parameters for substitution of H₂O by Py and 4-CNPy, where R = CF₃CH₂, were found to be ΔH^{\neq} = 94 ± 4 and $93 \pm 1 \text{ kJ·mol}^{-1}$, $\Delta S^{\neq} = +62 \pm 14 \text{ and } +55 \pm 4 \text{ J·mol}^{-1}$ K^{-1} , and $\Delta V^{\neq} = +5.7 \pm 0.4$ and $+7.4 \pm 0.1$ cm³ mol⁻¹, respectively. These activation parameters, in particular the values of ΔV^{\neq} , support the operation of a dissociative mechanism.

The discussion of the kinetic data will focus on the observed second-order rate constants for the overall reaction given in Equation (1), which is a composite of K and k, as given in Equations (2) and (3). Although for some systems k and K could be separated kinetically, the activation parameters were always determined for the combined value of kK, i.e. k_a . Little is presently known about the temperature and pressure dependence of the precursor formation step, and for that reason the thermodynamic contributions of K form part of the overall reported parameters. This complication should be kept in mind when interpreting the overall rate and activation parameters.

The reactivity of the cobaloxime complexes shows a strong dependence on the nature of the alkyl substituent R. The lability of these complexes was affected by the electronic and steric properties of the alkyl group. The secondorder rate constants for the reaction of trans-(PhCH₂)Co(Hdmg)₂(MeOH) with 4-NH₂Py, Py, and 4-CNPy were found to be 356, 182, and 296 M^{-1} s⁻¹ at 25.0 °C, respectively. However, those obtained for the reaction with trans-(CF₃CH₂)Co(Hdmg)₂(MeOH) were 0.330, 0.147 and 0.153 m⁻¹ s⁻¹ at 25.0 °C, respectively. The second-order constants for the reaction (CF₃CH₂)Co(Hdmg)₂(H₂O) with Py and 4-CNPy in H₂O were found to be 0.317 and 0.214 M^{-1} s⁻¹ at 25.0 °C, respectively. This trend shows that the kinetic trans effect is greater for $R = PhCH_2$ than for $R = CF_3CH_2$, in accordance with the donor properties of the alkyl group. For the complexes trans-[RCo(LNHpy)(HLNHpy)]⁺, HLNHpy is the tridentate 2-(2-pyridylethyl)amino-3-butanone oxime ligand and LNHpy- its conjugate base, the second-order rate constants for substitution of 2-(pyridylethyl) were found to be 19.1, 0.25, 2.2 \times 10⁻², and 1.7 \times $10^{-2} \text{ m}^{-1} \text{ s}^{-1}$ for R = Et, Me, CF₃CH₂, and -CH₂-, respectively.^[30] The reaction between alkylcobalamins

Table 2. Kinetic data for the reaction of trans-RCo(Hdmg)₂(S) with L in MeOH and H₂O as a function of temperature

	D - DI-CI		$k_{\rm a}, {\rm M}^{-1} {\rm s}^{-1}$ ${\rm R} = {\rm CF_3CH_2, L} = {\rm 4-CNPy}$		
<i>T</i> , °C	$L = Py^{[a]}$	H_2 , $S = MeOH$ $L = 4-CNPy^{[b]}$	$S = MeOH^{[c]}$	$S = H_2O^{[d]}$	
5.0	18.3 ± 0.1	28 ± 2			
10.0	33.9 ± 0.3	49 ± 2			
15.0	64 ± 1	97 ± 1			
20.0	108 ± 1	173 ± 2	0.073 ± 0.001	0.112 ± 0.001	
25.0	182 ± 1	296 ± 3	0.153 ± 0.001	0.214 ± 0.003	
30.0			0.254 ± 0.001	0.393 ± 0.004	
35.0			0.464 ± 0.003	0.739 ± 0.004	
40.0			0.820 ± 0.004	1.390 ± 0.020	
ΔH^{\neq} , kJ·mol ⁻¹	77 ± 1	80 ± 2	89 ± 3	93 ± 1	
ΔS^{\neq} , J·mol ⁻¹ K ⁻¹	$+57 \pm 5$	$+71 \pm 6$	$+36 \pm 8$	$+55 \pm 4$	

Table 3. Kinetic data for the reaction of trans-(CF₃CH₂)Co(Hdmg)₂(S) with Py in MeOH and H₂O as a function of temperature

	T, °C	k, s^{-1}	K, M^{-1}	kK , M^{-1} s ⁻¹
S = MeOH[a]	20.0	0.88 ± 0.05	0.07 ± 0.01	0.062 ± 0.010
	25.0	1.13 ± 0.05	0.13 ± 0.01	0.147 ± 0.013
	30.0	2.04 ± 0.14	0.12 ± 0.01	0.245 ± 0.026
	35.0	3.36 ± 0.40	0.12 ± 0.02	0.403 ± 0.083
	40.0	9.82 ± 0.89	0.08 ± 0.01	0.786 ± 0.121
	ΔH^{\neq} , kJ·mol ⁻¹			91 ± 5
	ΔS^{\neq} , J·mol ⁻¹ K ⁻¹			$+42 \pm 17$
$S = H_2O^{[b]}$	20.0	0.33 ± 0.01	0.57 ± 0.03	0.188 ± 0.011
	25.0	0.96 ± 0.08	0.33 ± 0.04	0.317 ± 0.047
	30.0	1.71 ± 0.25	0.34 ± 0.07	0.581 ± 0.147
	35.0	2.20 ± 0.19	0.54 ± 0.07	1.188 ± 0.185
	40.0	3.40 ± 0.08	0.68 ± 0.03	2.312 ± 0.117
	ΔH^{\neq} , kJ·mol ⁻¹			94 ± 4
	ΔS^{\neq} , J·mol ⁻¹ K ⁻¹			$+62 \pm 14$

 $^{[a]}$ [CF3CH2Co(Hdmg)2MeOH] = 1 \times 10 $^{-3}$ M and [Py] = 0.04 – 4.0 M. $^{[b]}$ [CF3CH2Co(Hdmg)2(H2O)] = 1 \times 10 $^{-3}$ M, [Py] = 0.04 – 1.28 M, pH = 8 and I = 0.1 M NaClO4.

(RCb1) and cyanide showed that the kinetic *trans* effect decreases in the order (R =) Pr > Me (ca. $10^4 \, \mathrm{m}^{-1} \mathrm{s}^{-1}$) > CF₃CH₂ > CF₂H ($10^3 \, \mathrm{m}^{-1} \, \mathrm{s}^{-1}$) > CF₃ > NCCH₂ > CN (0.1 $\mathrm{m}^{-1} \, \mathrm{s}^{-1}$).^[14] The substitution of H₂O by CN⁻ for various cobinamides (RCbi) increases in the order (R =) H₂O = DMBz < OH⁻ < CN⁻ < CH₂=CH, Me, and Et, with the corresponding rate constants ranging from about 10^3 to about $10^8 \, \mathrm{m}^{-1} \, \mathrm{s}^{-1}$.^[31]

The p $K_{\rm BH+}$ values for 4-NH₂Py, Py, and 4-CNPy are 9.17,^[32] 5.23,^[32] and 1.7^[33] (estimated), respectively. Both in water and methanol, the second-order rate constants for the ligation of the pyridines are only slightly affected by their basicity. Such a weak sensitivity of the kK values is consistent with an $I_{\rm d}$ mechanism, which is controlled by the breaking of the Co–S bond. Analogously, the substitution rate constants of aquacobalamin by a variety of substituted pyridine ligands were found to be independent of their p $K_{\rm BH+}$ values.^[25]

The second-order rate constants for substitution of H₂O in *trans*-(CF₃CH₂)Co(Hdmg)₂(H₂O) by Py and 4-CNPy are

higher than that found for the corresponding reaction with cysteine, [34] and this was ascribed to metal-to-ligand π bonding. The range of rate constants for axial ligand binding to methylaquacobaloxime are 4.3-7.5 (RNH₂), 12.8-27.3 (RS⁻), 49.6-55.2 (RSH), and 92-200 (X-py) M^{-1} s⁻¹.[35] That is, the π -acceptor ligands (X-Py, RS⁻ and RSH) react more rapidly than pure σ donors (RNH₂). In ligand-substitution reactions of trans-Me-Co(Hdmg)₂(H₂O), the higher reactivity of the substituted pyridines (as compared to neutral or anionic thiolates) stand in contrast to the opposite reactivity order for these same nucleophiles with various unsaturated carbon electrophiles.[35] The ratio of the second-order rate constants for the reaction of pyridine and 4-CNpy with alkylcobaloxime $(R = CF_3CH_2)$ is 1.48, and that for R = Me is 1.24. The second-order rate constant in the case of R = Me is higher than for $R = CF_3CH_2$, which is due to the stronger labilization by R = Me.

The second-order rate constants for the substitution of H₂O in *trans*-RCo(Hdmg)₂(H₂O) by pyridine were found to

Table 4. Kinetic data for the reaction of trans-RCo(Hdmg)₂S with 4-NH₂Py, Py, and 4-CNPy as a function of pressure

	Pressure, MPa	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$		
	,	4-NH ₂ Py	Py	4-CNPy
$R = PhCH_2, S = MeOH^{[a]}$	10	2.28 ± 0.07	0.98 ± 0.03	1.28 ± 0.03
2,	50	1.94 ± 0.05	0.83 ± 0.01	1.01 ± 0.05
	90	1.63 ± 0.04	0.68 ± 0.01	0.81 ± 0.01
	130	1.37 ± 0.04	0.58 ± 0.01	0.66 ± 0.06
	ΔV^{\neq} , cm ³ mol ⁻¹	$+9.8 \pm 0.1$	$+10.3 \pm 0.3$	$+13.0 \pm 0.3$
$R = CF_3CH_2, S = MeOH^{[b]}$	10	0.150 ± 0.006	0.107 ± 0.001	0.116 ± 0.006
5 2,	50	0.136 ± 0.007	0.093 ± 0.002	0.100 ± 0.006
	90	0.119 ± 0.002	0.082 ± 0.001	0.087 ± 0.001
	130	0.107 ± 0.003	0.072 ± 0.001	0.075 ± 0.004
	ΔV^{\neq} , cm ³ mol ⁻¹	$+7.5 \pm 0.3$	$+8.6 \pm 0.1$	$+9.4 \pm 0.1$
$R = CF_3CH_2, S = H_2O^{[c]}$	10	_	0.135 ± 0.002	0.114 ± 0.003
2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50	_	0.127 ± 0.003	0.101 ± 0.004
	90	_	0.115 ± 0.002	0.091 ± 0.002
	130	_	0.104 ± 0.002	0.081 ± 0.002
	ΔV^{\neq} , cm ³ mol ⁻¹	_	$+5.7 \pm 0.4$	$+7.4 \pm 0.1$

[a] [PhCH₂Co(Hdmg)₂MeOH] = $(4-7) \times 10^{-4}$ M, {[4-NH₂Py], [Py] = 0.04 M and at 5.0 °C}, {[4-CNPy] = 0.0225 M and at 10.0 °C}. [b] [CF₃CH₂Co(Hdmg)₂MeOH] = 2×10^{-3} , [NH₂Py] = 0.08 M, {[Py], [4-CNPy] = 0.16 M}, and at 40.0 °C. [c] [CF₃CH₂Co(Hdmg)₂H₂O] = 2×10^{-3} , [Py] and [4-CNPy] = 0.08 M, pH = 8, at 40.0 °C and I = 0.1 M NaClO₄.

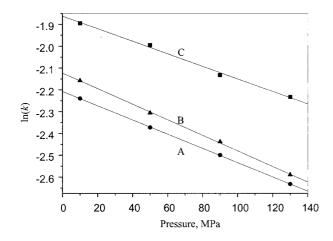


Figure 4. Plots of ln(k) versus pressure for the reaction between trans- $(CF_3CH_2)Co(Hdmg)_2(MeOH)$ and L, where L = Py (A), 4-CNPy (B) and 4-NH₂Py (C). Experimental conditions: $[Co^{III}] = 2 \times 10^{-3}$ M, $[NH_2Py] = 0.08$ M, [Py] and [4-CNPy] = 0.16 M, at $40.0\,^{\circ}C$

be 1.49×10^4 (isopropyl), 1.17×10^3 (ethyl), 1.16×10^2 (methyl), 1.22×10^3 (phenylethyl), 1.64×10^2 (3-cyanopropyl), 1.65×10^2 (2-methoxyethyl), 2.34×10^1 (1-propenyl), 4.2 (iodomethyl), 3.17×10^{-1} (2,2,2-trifluoroethyl), 1.06×10^{-1} (chloromethyl), and 5.59×10^{-2} (cyanomethyl) M^{-1} s⁻¹ at 25 °C, respectively. (36] The second-order rate constants for substitution of methanol by pyridine in the complex trans-(RSO₂)Co(Hdmg)₂(MeOH) were found to be 4.79 ± 0.01 and 3.56 ± 0.11 M^{-1} s⁻¹ for R = p-tolyl and methyl, respectively. Substitution of the solvent by pyridine in the complex (CH₃C₆H₄SO₂)Co(Hdmg)₂S does have an effect on the second-order rate constants, which were found

to be 1.12×10^{-1} , 4.79×10^{-2} , and 4.16×10^{-3} m⁻¹ s⁻¹ for S = EtOH, MeOH, and H₂O, respectively.^[37]

Ligand-substitution reactions of trans-RCo(Hdmg)₂H₂O, for $R = PhCH_2$ by Py and 4-CNPy in methanol, and also for $R = CF_3CH_2$ by 4-CNPy in H_2O and MeOH, are characterised by a linear dependence of the observed pseudo first-order rate constant on the concentration of the entering nucleophile as shown in Figures 3 and S3. In terms of the suggested dissociative interchange mechanism, this means that precursor formation is weak and does not show up in the kinetic data even at high concentrations of the entering ligand. The curvature observed in the nucleophile concentration dependence of $k_{\rm obs}$ for the substitution reactions of trans-RCo(Hdmg)₂(H₂O) (R = PhCH₂ and CF₃CH₂) by 4-NH₂Py and Py suggests that an interchange mechanism involving a rapid pre-association of the complex with the incoming ligand is operating. The precursor-formation constant decreases when the electron donor ability of the alkyl group in the trans position is increased. It was found that the precursor-formation constants for the substitution of MeOH by 4-NH₂Py are 0.35 and 0.54 M^{-1} at 25.0 $^{\circ}$ C for R = PhCH₂ and CF₃CH₂, respectively. It is also apparent that the precursor-formation constant depends on the nature of the nucleophile. The π -electron density on the Py ring increases in the order 4-CNPy < Py < 4-NH₂Py,^[38] which is also the order of increasing tendency for precursor formation.

It is generally known from the literature that a system must be sufficiently electron-rich in order that bonding through the π -electrons of pyridine can occur.^[39] This π -interaction results in the effective binding of the nucleophile close to the metal centre during precursor formation, which is followed by an interchange of ligands controlled by

657

breakage of the Co-OH₂ bond by an I_d mechanism.^[25] The pre-equilibrium constants for the reaction $[MeCo\{(DO)(DOH)pn\}H_2O]^+$ with L = imidazole, benzylamine, Py and 4-MePy at 25 °C were found to be 0.26, 0.12, 1.00, and 1.81 m⁻¹, respectively.^[15] The pre-equilibrium constants for the reaction of aquacobalamin with Py, 4-MePy, and 2,4-DMePy were found to be 1.1, 2.5, and 4.9 M^{−1}, respectively.^[25]

By way of comparison, the lability of trans-RRh(Hdmg)₂(H₂O) is affected by the steric and electronic effects of the alkyl group R, and in all cases the reaction rate is almost independent of the nucleophilicity of the incoming ligand. [40,41] There is a definite trend in the ΔV^{\neq} data: the values are significantly positive for the faster substitution reactions ($R = CH_3$) but significantly negative for the slower substitution reactions (R = CF_3CH_2).^[42] This trend correlates well with the trans-influence of the R groups in the ground state, as observed for a series of pyridine (py) complexes: the Rh-Py bond length decreases in the order CH_3 [2.220(3) Å] > $ClCH_2$ [2.178(3) Å] > CF₃CH₂ [2.145(3) Å]. [40,41] A similar trend is expected for the Rh-O bond in the corresponding aqua complexes: faster reactions are thus associated with the stronger trans influence of the methyl group, and slower reactions with the weaker trans influence of ClCH₂ and CF₃CH₂. Furthermore, the nature of the R group directly determines the substitution mechanism. The strong donor properties of CH₃ result in a dissociative substitution process (I_d), characterised by the significantly positive ΔV^{\neq} value, whereas the weaker donor properties of CF₃CH₂ favour a more associative substitution mechanism (Ia), as indicated by the significantly negative value of $\Delta V^{\neq,[42]}$ Thus, in the transition state the degree of bond breakage (Rh-OH₂) and bond formation (Rh-L) is controlled by the donor properties of R.

The ΔH^{\neq} values for substitution reactions of trans- $RCo(Hdmg)_2(H_2O)$ (for $R = PhCH_2$ and CF_3CH_2) by pyridine derivatives in H₂O and methanol are relatively independent of the nature of the incoming ligand. It is expected that the reactions involve a dissociative activation process, since the ligands are loosely bound in the transition state. The activation enthalpy for the substitution reaction with $R = CF_3CH_2$ is higher than for $R = PhCH_2$ due to the strong Co-OH₂ bond in the ground state. Hence, ΔH^{\neq} values appear to be affected by both the electron-withdrawing and steric effects of the R group. The influence of these factors on ΔS^{\neq} , however, cannot be rationalised. The entropy values should be slightly more positive since the transition state should be less ordered than the initial state, owing to the relief of steric strain. The organocobaloximes are about 10⁵ times more labile than the corresponding nitro and iodo-aqua complexes. This very high rate enhancement is due to both the decrease in the activation enthalpy and the increase in the activation entropy.^[43]

The values of ΔV^{\neq} obtained for R = CF₃CH₂ in methanol were found to be +7.5, +8.6, and +9.4 cm³ mol⁻¹, respectively. The values of ΔV^{\neq} for substitution of the solvent by pyridine derivatives (4-NH₂Py, Py, and 4-CNPy) in the complex trans-(PhCH₂)Co(Hdmg)₂(H₂O) were found to be +9.8, +10.3 and +13 cm³ mol⁻¹, respectively. This is consistent with an enhanced dissociative (limiting D) character in the mechanism on going from the CF₃CH₂ derivative to the PhCH₂ derivative. Interestingly, ΔV^{\neq} for substitution of H_2O by Py and 4-CNPy ($R = CH_2CF_3$ in H_2O) were found to be +5.7 and +7.4 cm³ mol⁻¹, respectively. In these cases the small positive values of ΔV^{\neq} suggest that the mechanism is of an I_d nature. Thus the substitution mechanism changes from limiting D to I_d along the series from $R = PhCH_2$ to $R = CF_3CH_2$, on decreasing the basicity of the nucleophiles, and on changing the solvent from MeOH to H₂O. This mechanistic changeover is clearly seen in the size of ΔV^{\neq} , and can be directly correlated with the donor properties of R, which in turn control the magnitude of the rate constants. The greater donating properties of PhCH₂ result in a limiting dissociative process as characterized by the significantly positive ΔV^{\neq} . Similarly, the weaker donor properties of CF₃CH₂ favour more a dissociative interchange mechanism, as shown by the ΔV^{\neq} data. The activation parameters for substitution of aquacobalamin by thiourea, substituted thiourea and pyridine for the forward and reverse reactions conclusively confirm that the mechanism of the substitution is a dissociative interchange. For instance, the volumes of activation for both the forward and reversible reactions have values between +6 and +10 $cm^3 mol^{-1}$.[16,17]

We conclude that all the available data underline the operation of a limiting dissociative (D) mechanism for substitution of methanol by 4-CNPy when $R = PhCH_2$. However, when $R = CF_3CH_2$, the mechanism is I_d for substitution of the solvent by 4-CNPy in methanol or H₂O. The non-linear concentration dependence must therefore be due to the operation of an I_d mechanism, and involve the formation of a precursor complex. The strong precursor formation is ascribed to an interaction of the π system of the pyridine ligand with the coordination sphere of the complex. This π interaction results in the effective binding of the entering nucleophile close to the metal centre during precursor formation, which is followed by an interchange of ligands controlled by the breakage of the Co-solvent bond by an I_d mechanism.

Experimental Section

Materials: All chemicals were of p. a. grade and used as received. 4-Aminopyridine and 4-cyanopyridine were purchased from Acros, tricine buffer from Sigma and pyridine from Baker. Ultra pure was used in the kinetic measurements. trans- $RCo(Hdmg)_2H_2O$ (R = CF₃CH₂, PhCH₂) were prepared as previously reported.^[44] Because alkyl cobaloximes are light sensitive, their solutions were prepared and handled away from light.

Instrumentation: The pH of the solution was measured using a Mettler Delta 350 pH meter. The pH meter was calibrated with standard buffer solutions at pH 4 and 7. UV/Vis spectra were recorded on Shimadzu UV-2101 and Hewlett Packard 8452A spectrophotometers.

Kinetic measurements were carried out on an Applied Photophysics SX 18MV stopped-flow instrument coupled to an online data acquisition system. At least eight kinetic runs were recorded under all conditions, and the reported rate constants represent the mean values. All kinetic measurements were carried out under pseudofirst order conditions, i.e. the entering nucleophile concentration was in at least a tenfold excess. Measurements at high pressure were carried out using a home-made high pressure stopped-flow unit. [45] Kinetic data were analyzed with the OLIS KINFIT program. All instruments used were thermostatted to the desired temperature (± 0.1 °C).

Acknowledgments

The authors gratefully acknowledge financial support from CNR (Rome), MIUR (Rome), PRIN No. MMO3185591, the Deutsche Forschungsgemeinschaft and the Max-Buchner Research Foundation (to R. v. E.).

- [1] N. Bresciani-Pahor, M. Forcolin, L. G. Marzilli, L. Randaccio, M. F. Summers, P. J. Toscano, Coord. Chem. Rev. 1985, 63, 1.
- [2] A. L. Crumbliss, W. K. Wilmarth, J. Am. Chem. Soc. 1970, 92, 2593.
- [3] K. L. Brown, S. Satyanarayana, J. Am. Chem. Soc. 1992, 114, 5674.
- [4] K. L. Brown, R. G. Kallen, J. Am. Chem. Soc. 1972, 94, 1894.
- [5] L. G. Marzilli, P. J. Toscano, L. Randaccio, N. Bresciani-Pahor, M. Calligaris, J. Am. Chem. Soc. 1979, 101, 6754.
- [6] L. Randaccio, N. Bresciani-Pahor, P. J. Toscano, L. G. Marzilli, J. Am. Chem. Soc. 1980, 102, 7372.
- [7] N. Bresciani-Pahor, L. Randaccio, P. J. Toscano, A. Sandercock, L. G. Marzilli, J. Chem. Soc., Dalton Trans. 1982, 129.
- [8] M. F. Summers, P. J. Toscano, N. Bresciani-Pahor, G. Nardin, L. Randaccio, L. G. Marzilli, J. Am. Chem. Soc. 1983, 105, 6259
- [9] N. Bresciani-Pahor, L. G. Marzilli, L. Randaccio, P. J. Toscano, E. Zangrando, J. Chem. Soc., Chem. Commun. 1984, 1508.
- [10] G. Costa, G. Mestroni, E. de Savorgnani, *Inorg. Chim. Acta* 1969, 3, 323.
- [11] G. Costa, G. Mestroni, L. Stefani, J. Organomet. Chem. 1967, 7, 493
- [12] G. Costa, G. Mestroni, G. Tauzher, L. Stefani, J. Organomet. Chem. 1966, 6, 181.
- [13] M. S. A. Hamza, X. Zou, K. L. Brown, R. van Eldik, *Inorg. Chem.* 2001, 40, 5440.
- [14] M. S. A. Hamza, X. Zou, K. L. Brown, R. van Eldik, J. Chem. Soc., Dalton Trans. 2002, 3832.
- [15] G. Tauzher, R. Dreos, G. Costa, M. Green, J. Chem. Soc., Chem. Commun. 1973, 413.
- [16] G. Stochel, R. van Eldik, *Inorg. Chem.* **1990**, 29, 2075.
- [17] M. Meier, R. van Eldik, Inorg. Chem. 1993, 32, 2635.

- [18] B. M. Alzoubi, M. S. A. Hamza, C. Dücker-Benfer, R. van Eldik, Eur. J. Inorg. Chem. 2002, 968.
- [19] M. S. A. Hamza, C. Dücker-Benfer, R. van Eldik, *Inorg. Chem.* 2000, 39, 3777.
- [20] G. Stochel, R. van Eldik, H. Kunkely, A. Vogler, *Inorg. Chem.* 1989, 28, 4314.
- [21] A. G. Gergan, N. E. Brasch, R. van Eldik, *Inorg. Chem.* 2001, 40, 1430.
- [22] F. Nome, J. H. Fendler, J. Chem. Soc., Dalton Trans. 1976, 1212.
- [23] H. M. Marques, J. C. Bradley, L. A. Campbell, J. Chem. Soc., Dalton Trans. 1992, 2019.
- [24] H. M. Marques, J. Chem. Soc., Dalton Trans. 1991, 339.
- [25] F. F. Prinsloo, M. Meier, R. van Eldik, *Inorg. Chem.* 1994, 33, 900.
- [26] W. W. Reenstra, W. P. Jencks, J. Am. Chem. Soc. 1979, 101, 5780.
- [27] F. F. Prinsloo, E. L. J. Breet, R. van Eldik, J. Chem. Soc., Dalton Trans. 1995, 685.
- [28] M. S. A. Hamza, J. Chem. Soc., Dalton Trans. 2002, 2831.
- [29] [29a] N. E. Brasch, M. S. A. Hamza, R. van Eldik, *Inorg. Chem.* 1997, 36, 3216. [29b] M. S. A. Hamza, A. G. Cregan, N. E. Brasch, R. van Eldik, *J. Chem. Soc.* 2003, 596.
- [30] B. M. Alzoubi, M. S. A. Hamza, A. Felluga, L. Randaccio, G. Tauzher, R. van Eldik, Eur. J. Inorg. Chem. 2003, 3738-3744.
- [31] D. A. Baldwin, E. A. Betterton, J. M. Pratt, S. Afr. J. Chem. 1982, 35, 173.
- [32] A. Albert, E. P. Serjeant, The Determination of Ionization Constants, Chapman and Hall, London, 1984.
- [33] P. Moore, R. G. Wilkins, J. Chem. Soc. 1964, 3454.
- [34] M. S. A. Hamza, A. Felluga, L. Randaccio, G. Tauzher, R. van Eldik, *Dalton Trans*. submitted for publication.
- [35] K. L. Brown, D. Chernoff, D. J. Keljo, R. G. Kallen, J. Am. Chem. Soc. 1972, 94, 6697.
- [36] K. L. Brown, D. Lyles, M. Pencovici, R. G. Kallen, J. Am. Chem. Soc. 1975, 97, 7338.
- [37] J. M. Palmer, E. Deutsch, *Inorg. Chem.* **1975**, *14*, 17.
- [38] E. S. Gould, *Mechanism and Structure in Organic Chemistry*, Holt International, London, **1970**.
- [39] K. Schofield, Hetero-Aromatic Nitrogen Compounds: Pyrroles and Pyridines, Butterworths, London, 1967, 2213.
- [40] N. B. Pahor, R. Dreos-Garlatti, S. Geremia, L. Randaccio, G. Tauzher, E. Zangrando, *Inorg. Chem.* 1990, 29, 3437.
- [41] L. Randaccio, S. Geremia, R. Dreos-Garlatti, G. Tauzher, F. Asano, G. Pellizer, *Inorg. Chim. Acta* 1992, 194, 1.
- [42] [42a] R. van Eldik, A. E. Merbach, Comments, Inorg. Chem. 1992, 12, 341. [42b] C. Dücker-Benfer, R. Dreos, R. van Eldik, Angew. Chem. Int. Ed. Engl. 1995, 34, 2245.
- [43] R. Dreos-Garlatti, G. Tauzher, G. Costa, M. Green, *Inorg. Chim. Acta* 1981, 50, 95.
- [44] G. N. Schrauzer, R. J. Windgassen, J. Am. Chem. Soc. 1966, 88, 3738.
- [45] R. van Eldik, W. Gaede, S. Wieland, J. Kraft, M. Spitzer, D. A. Palmer, Rev. Sci. Instrum. 1993, 64, 1355.

Received October 14, 2003